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Tidal Dissipation in the Moon3 
p j $ w - # f i  

I 

3 the heat now being generated in the moon 6 y  tides is less than 0.010 erg/g/yr.; i.e.. 
negligible compared to radioactive heat@ tiy a chondritic composition. Tidal heating mould 

. 
Urey e t  al. [1959] suggested that tidal dissi- 

pation may have signiiicaniiy c u i i t i i h t d  te md is ?he Krnnecker delta. 
heating of the moon's interior in the past. Ropal 
[1963] has calculated the tidal dissipation in a 
moon assumed to be a fluid with Newtonian vis- 
cosity. However, since tidal distortion is a rela- 
tively high frequency phenomenon, i t  seems a 
more reasonable extrapolation from experience 
to  assume that tidal dissipation in the moon 
occurs as a result of imperfect elasticity with a 
factor 1/& for dissipation per cycle comparable 
to those estimated for the earth's mantle from 
polar tides, free oscillations, and latitude varia- 
tion. 

Where P I ,  is the Legendre associated function 

To obtain the variation in time of r*, +*, A", 
we must express them in terms of the earth's 
orbit referred to the moon. For the present orbit 
this is most simply done by using the numerical 
values of coefficients as given by Brown's theory 
of lunar motion, as recently described by Hum*- 
son [1963]. Because we wish to  investigate the 
effects of changing the orbital parameters, and 
because the necessary computer subroutines had 
already been written for another purpose (to a 
degree of detail superfluous to  the present prob- 
lem), we used a different development [Kaula, 
19611 based on the assumption that  the orbit 
can be considered a Keplerian ellipse at a fmed 

= T g 2  ($ ) ' pdCOs  (1) moving node and perigee. For the tidal problem, 
the most, significant omissions under this as- 

Where P c  is a Legendre polynomial; r, +, X are sumption are shortrperiod perturbations of the 
radius, latitude, and longitude in a moon-fixed semimajor axis and the longitude by the sun. 
coordinate system; the asterisked quantities For the present orbit, the largest of these terms 
refer to  the disturbing body; Gill* is the prod- (those containing h in the arguments of equa- 
uct of the gravitational constant and the mass; tions 6 to 8 of Harrison [1963]) have a ratio of 
and S is the arc from (+*, A*) to  (+, A).  We about 0.2 to the terms arising from the elliptic- 
apply the addition theorem to  (1) : ity of the orbit. This ratio would vary directly 

with variation in the semimajor axis of the lunar 
orbit but would stay about the same with variac w=- GM* ( 2  - m)! 
ation in the inclination or eccentricity. It is con- 
astent, then, with the unavoidab!e crudeness of 
our estimates of the dissipation factors l/Q to  -Pt,(sin 4)Plm(Sin 4*) 
assume a purely elliptic orbit. 

We apply the transformation of equations 7 to 

The tidal disturbing function W is 

GM* inclination to the moon's equator with secularly 

(2 - sm) 

. [co9 mx cos mx* + sin mx sin mh*~ (2) 

/- 
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I - m  even 
n 

+ 
+ 
+ 

[cos 

(3) 

where a*, e*, i*, a*, w*, and M* are the Kep- 
lerian elements of the earth's orbit referred t o  
the moon's equator and a departure point 
thereon fixed with respect to inertial space; 
F r m p ( i * )  and GIPI(e*) are polynomials of the 
sine and cosine of the inclination and of the 
eccentricity, respectively, and 0 is the 'lunar 
sidereal time': the angle between the inertially 
fixed departure point and the point on the moon 
from which selenographic longitudes are meas- 
ured. We assume the rate e to be constant, 
which is equivalent to neglecting the physical 
libration. 

We abbreviate (3) 51s 

m I 

where the single subscript g replaces the sub- 
script pair p and q ;  the amplitude 

The strain energy per unit volume, divided 
into shear (or distortional) and compressive (or 
dilatational) terms [Jeffreys, 1955, p. 121 ia 

(7) 
k 
6 

E = peii'eii' + - emmen,, 

where summation is taken over repeated sub- 
scripts. In  (7) ,  p is the rigidity, k is the bulk 
modulus, e , ,  is the strain tensor and e,,' is the 
part of the strain tensor expressing departures 
from symmetry: 

+ 
eij' = eij - $6iiekr (8) 

where 6,, is the Kronecker delta. 

as a sum of spherical harmonics, 
If the tidal disturbing function is expressed . 

m I 

.[Azm(t) cos mX + BIm(t )  sin mX] (9) . 
the strain tensor e,, at  any point ( r ,  +, A) can 
be expressed as 

e, i  = C [ A I m ( t ) e r i I m c ( ~ ,  4, 
I . m  

+ B I m ( t ) e i i i m s ( r ,  4 ,  111 (10) 

where c{jImo, ,  is the response of a planetary 
model of specified shear modulus, bulk modulus, 
and density to a unit coefficient in the tidal dis- 
turbing function. 

Comparing (4) and (9), we have 

(12) 
Substituting ( lo) ,  ( l l ) ,  and (12), into (7)  

and sorting out the algebra which results yields 

E = [(slImou,b + CIln#u.A) 
I,m.a,u.i,h 
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all subscripts t o  obtain the mean dissipation 
rate a t  a particular point fixed in the moon: 

+ ( S 3 1 n v s . A  + C 3 1 n @ m . k )  

{ (u lmg - uunh)l - ( t l m o  - tunh)l gd(r,  +, A) I 

{(ulmg - u-mh)t - (llrnr - t u ~ h ) I ]  1 .(-s“)“I“ AElmguoh- I ffZmg - uunh I] (17) 
cos bodd 

(13) 
where b = I + u - m - v ;  (u, v)  summations 

If the rotation is synchronous with revolution, 
as it is at present, 

(18) start at (I, m) ; and ;* + A$* + o* - e = 0 

4 For any particular term of subscripts I, m, u, 
v,  g, and h, t.he energy dissipated in one cycle of 
duration 2x/(uc,, + u,.,) will be 

* 
AElm,uoh+ = 2r[ I  S I ~ - . ~ . A / Q .  C ~ i m . - r . J Q c  I 

I S~i..~~.d&, -I- Cz;Impr.i/Qc I] (15) 

and in one cycle of duration 2x/(urrnl  - uu, ,k)  

A E l m g u z h -  = 2r[l S3irrr.A/Qs + C s i n , u . d Q c  I 
I s 4 i m 0 s . d Q s  C4inru.A/Qc I] (16) 

To obtain the contributions to energy dissi- 
pation per unit time, me multiply (15) and (16) 
by the absolute values of the rates per unit time, 
I u , , , , ~  + U . * ~ I  and Iu,,,,, - uuWnl. We sum over 

, 

there are terms that mill contribute only through 
their amplitude -armr but not through their rate 
urmg. In the synchronous case, a reference longi- 
tude must be fixed. If this reference longitude is 
the mean direction of the earth, all terms con- 
taining sin {m(o* + M* + a* - e)} are zero 
and all terms containing cos {m(o* + M* + 
n* - e ) }  are unity; i.e., in (10) the contribu- 
tion to  Alm(t )  will be ai,, for L - m even and 
0 for 1 - m odd, and to Bl,(t) it will be 0 for 
1 - m even and --a,,, for 1 - m odd. Practi- 
cally the only term for which this effect is sig- 
nificant is ( I ,  m, p ,  q )  = ( 2 ,  2, 0, 0). 

Also, there d l  be degeneracies for m = 0 in 
all cases and for m # 0 in the synchronous 
case, requiring the combination of terms before 
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proceeding as in equations 13 to 16. In  these 
cases, the rate for the term of subscripts ( I ,  m, 
p ,  q )  will be the negative of the rate for the 
term of subscript ( I ,  m, 1 - m - p ,  - q ) .  If 
the rate is taken as that of the ( I ,  m, p ,  q )  term, 
the amplitude for the cosine coefficient will be 

and for the sine coefficient 

where the subscript correspondence is h with 
( p ,  q)  and i with ( I  - m - p ,  - q ) ,  and armn 
and a,,, are computed by ( 5 ) .  Then (14) must 
be modified so that b,,, and b,,, coefficients ap- 
pear in front of the e,,Im,, c , ,~~ . ,  etc., terms in 
place of a,,, and uuOh. 

Another set of degeneracies occurring in the 
synchronous case arises because terms of sub- 
script ( I ,  m, p ,  q )  will have rates equal to terms 
of subscript (I, m + 2i, p - i, q ) ,  where i is 
any integer. 

Including terms for which the disturbing func- 
tion rate is zero in effect makes the energy dis- 
sipation rate a function of the constant value of 
the strain, which raises the question of whether 
strains from other than tidal causes should also 
be considered. Since we are interested in the 
dissipation over geological durations of time, 
these terms should perhaps be omitted because 
in such time we would expect nonoscillating 
strains to  be removed by anelastic processes. 
But the dissipation rate obtained would then bc 
an absolute minimum for the assumed Q. The 
moments of inertia of the moon indicate that 
it now contains strains larger than tidal, so 
leaving in the nonoscillating tidal t e r m  should 
yield a dissipation rate unlikely to be too high. 

The quantities ul,,, ulmr, 1 = 2, and m = 0, 
1, 2 were calculated from (5)  and (6),  for a 
variety of lunar orbits, using subroutines for 
F,,,  (i*) and GI, ,  (e*) originally devised for 
analysis of close satellite orbits, and computing 
the rates A*, M*, and 6% by the methods de- 
scribed by KauZa [1961]. 

The strain tensors c,,~,' and c,,~,,, were calcu- 
lated using the formulation of the earth-tide 
problem of Alterman et al. [1959], which has 
also been used by Takeuchi et al. [1962] and 
Longman [ 19631. In this formulation, the basic 
variables are the radial factors of vector spheri- 

cal harmonic expressions of the displacements, 
stresses, and potential terms: yl, of the radial 
displacement ; y2, of the compressive stress ; ys, 
of the tangential displacement; y,, of the shear 
stress; y6, of the potential; and ye, of the po- 
tential gradient less the contribution thereto of 
the radial displacement. The equations of equi- 
librium then become a system of six first-order 
equations: 

4 

The P4,'s are functions of r,  k, p ,  g, and p. Three 
columns of P,, have terms of O(r-*) , so that the 
requirement of regularity a t  the origin eliminates 
three constants of integration. The three sur- 
face conditions of zero tangential stress, zero 
radial stress, and the potential gradient being 
related t o  the potential as a spherical harmonic 
in free space make the problem determinate. 
After solving (21) numerically for the y,'s cor- 
responding to a particular harmonic Ylm = 
r'Sr,, the contribution to the strain matrix E,, 

is calculated by (here 6 is colatitude, 4 is longi- 
tude, and X is k - %,u) : 

. 
~ 

ae ) ys 
1 a2s1, as,, .(- __ + cos e-- sin e 34' 

(22) 
Equation 22 can be derived using the equat,ions 
of Love [1927, p. 561, applying a factor of 1/2 
to  the off diagonal components to be consistent 
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Fig. 1. 

R=.2 LUNAR RADII R=.6 LUNAR RADII 

R=.8 LUNAR RADII R=.97 LUNAR RADII 

UNITS: lC? ERGS/ CM 3/ DAY 
Present tidal energy dissipation in the moon, assuming a shear Q of 100 and 

pressive Q of 1OOO. 
a com- 

with tensor convention. The E~,,,,,'s from the 
Y,,,,'s were used in (14). 

The pole tide suggests a Q of more than 100 
for the earth a t  a 14-month period [Afunk and 
MacDonaZd, 1960, p. 1621, while the latitude 
variations indicate a Q of about 40 a t  the same 
period [Nunk and MacDonatd, 1960, p. 148; 
Jeflreys, 1959, pp. 255-2591. The free oscilla- 
tions of the earth indicate Q's of 170 to 400 for 
periods less than an hour [Beniofl et al., 1961; 
Ness et al., 19611, except for a Q of 7500 for 
the S,", the only mode which is purely compres- 
sive [Ness et al., 19611. Models for rock creep 
proposed by Jef freys  and Crampin [l960], J .  R. 
MacDonald [ 19611, and Lomnitz [ 19621 suggest 
Q's between 40 and 100 for semimonthly and 
monthly periods. A shear Q. of 100 thus seems a 
reasonable compromise. Considering that excita- 
tion from the atmosphere and oceans may main- 
tain the s," free oscillation [Ness et al., 19611, we 
assume a compressive Q o  of 1000. 

The strain energies were calculated for ser- 
era1 lunar models proposed by Harrison [1963]. 

' 

0 

However, since the uncertainty in Q reduces 
this problem to one of estimating order of mag- 
nitude, this discussion will be limited to a 
homogeneous moon of density 3.34 g cmJ, rigid- 
ity 7.38 x 10" dyne cm-', and bulk modulus 
1.23 x 10" dyne cm-'. The Love numbers ob- 
tained for this model by the numerical solution 
of (15) were 0.0344 for h, 0.0195 for k ,  and 
0.0095 for 1. 

The thermal histones of lunar models with 
chondritic composition have been calculated by 
G. J .  F .  &lacDonald [1959]. Even with a cold 
origin, these models come very close to melting 
a t  depths in the moon exceeding 500 km. The 
chondritic composition used had radioactive con- 
tents of 8.0 X lo-', 1.1 X lo", and 4.4 x 10" 
g/g for potassium, uranium, and thorium, re- 
spectively, which yield a thermal energy output 
of 1.59 ergs/g/year at present and 12.8 ergs/g/ 
year 4.5 x 10" years ago. Hence for tidal d i s  
sipation to  be significant, it  should contribute 
of the order of 5 ergs/g/year, or 0.04 erg/cm*/ 
day. 
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RATIO TO PRESENT DISSIPATION 
A 

c 

RATIO TO PRESENT ORBITAL PARAMETER 

Fig. 2. Variation of tidal energy dissipation in the moon with one-at-a-time variation in 
orbital parameters. 

The results for the present orbit of the moon 
are shown in Figure 1 in the form of maps of 
the energy dissipation at four levels within the 
moon. Since the dissipation is symmetric about 
the equator and two meridians a t  right angles, 
we need to show only one octant for each level. 
The evident features are, first, that the tidal 
dissipation is at present a negligible source of 
heat and, second, that the distribution of the 
heating is extremely nonuniform both radially 
and laterally. This variability of distribution 
suggests that, if the moon’s orbit had ever been 
such that the over-all heating was appreciable, 
large thermal stresses would have resulted, lead- 
ing to  convection or some other form of mass 
motion. 

The amplitudes and rates were therefore cal- 
culated for different orbital specifications. Each 
element was varied in turn, the others being 
held fixed at the present values: (1) the semi- 
major axis (holding the rotation synchronous 
with revolution about the earth); ( 2 )  the ec- 
centricity; (3) the inclination; and (4) the 
rotation rate. The results are displayed in Fig- 
ure 2, in the form of curves showing van  a t’ ion 
in the average ratio to the present dissipation 
with variation in the orbital elements. The vari- 
ation is particularly marked with variation in 
the semim,ijor axis. If the semimajor axis were 
only one-third as great as it is now, the criterion 
of 0.04 erg/cm*/day would be exceeded for 

most of the moon. At the secular acceleration 
calculated by Munk and MacDonaZd [1960], 
the moon would have been at this distance 
about lo” years ago. 

The pattern of energy dissipation shown in 
Figure 1 is composed of even-degree harmonics 
symmetric about the equator: (4, 4),  (4, 2) ,  
( 4 0 )  , (2 ,2) ,  and ( 2 , O ) .  In  a moon close enough 
so that heating by tidal dissipation was large 
enough to cause convection, the second-degree 
terms in its mass distribution would be deter- 
mined mainly by the gravitational attraction of 
the earth. Howevcr, the fourth-degree terms 
would be determined by the convective pattern. 
It will therefore be interesting, when variations 
in the gravitational field and external form of 
the moon are better determined, to  find out 
whether these fourth-degree terms are mark- 
edly larger than other terms, such as the third- 
degree terms. If they are, i t  will be a strong 
indication that the moon was once close enough 
for heating by tidal dissipation to cause convec- 
tion, and hence i t  would lend further evidence 
as t o  the moon’s origin. 

In  conclusion we can say that heating by 
tidal dissipation is currently insignificant (un- 
less Q factors estimated from the earth’s mantle 
are wrong by a factor of about 100) but that 
this study confirms the suggestion of Urey et al. 
[ 19591 that it would have been important in the 
past if the moon were much closer to the earth. 

, 

, 



TIDAL DISSIPATION IN THE MOON 4965 

Acknowledgment. W. D. Putney contributed 
greatly to  this work by programming most of the 
elastic deformation calculations. 

REFERENCES 

Alterman, Z., H. Jarosch, and C. L. Pekeris, Oscil- 
lations of the earth, Proc. Roy .  SOC. London, 
.962,80-95,1959. 

Benioff, H., F. Press, and S. Smith, Excitation of 
the free oscillations of the earth by earthquakes, 
J .  Geophys. Res., 66, 605-620, 1961. 

Harrison, J. C., An analysis of the lunar tides, J. 
Geophys. Res., 68(14), 1963. 

Jeffreys, H., The Earth, 4th ed., 420 pp., Cam- 
bridge University Pres, 1959. 

Jeffreys, H., and S. Crampin, Rock creep: a correc- 
tion, Monthly Notices Roy .  Astron. SOC., 121, 

Kaula, W. M., Analysis of gravitational and geo- 
metric aspects of geodetic utilization of satellites, 
Geophys. J., 6, 1@-133,1961. 

Kopal, Z., Gravitational heating of the moon, 
-. Iconis; 1; 412-421, 1963. 

Lomnitz, C., Application of the logarithmic creep 
law to stress ware attenuation in the solid earth, 
J .  Geophys. Res., 67,365-368, 1962. 

Longman, I. M., A Green’s function for determin- 

571-577, 1960. 

ing the deformation of the earth under surface 
mass loads, 2, Computations and numerical re- 
sults, J. Geophys. Res., 68,485496,1963. 

Love, A. E. H., A Treatise on the Mathematical 
Theory of Elasticity, 4th ed., 643 pp., Cam- 
bridge University Press, 1927; republ. Dover 
Publications, New York, 1944. 

MacDonald, G .  J. F., Calculations on the thermal 
history of the earth, J. Geophys. Res., 64, 1967- 
2000,1959. 

MacDonald, J. R., Theory and application of a 
superposition model of internal friction and 
creep, J .  Appl. Phys., 32, 2385-2398, 1961. 

Munk, W. H., and G. J. F. MacDonald, The Rota- 
tion of the Earth, 323 pp., Cambridge University 
Press, 1960. 

Ne=, N. F., J. C. Harrison, and L. B. Slichter, Ob- 
servations of the free oscillations of the earth, 
J. Geophys. Res., 66, 621-630, 1961. 

Takeuchi, H., M. Saito, and N. Kobayashi, Stati- 
cal deformations and free oscillations of a model 
earth, J. Geophys. Res., 67, 1141-1154, 1962. 

Urey, H. C., W. M. Elmser, and M. G. Rochester, 
Note on the internal structure of the moon, 
Astrophys. J., 1.99, 842-848, 1959. 

(Manuscript received April 22, 1963.) 

3 


